Limiti di funzioni di variabile continua

Concetti introduttivi - Limiti di successioni numeriche - Limiti di funzioni di variabile continua - Grandezze infinite - Teoremi sui limiti - Forme indeterminate - Forme notevoli - FORMULARIO

Il caso di una variabile continua differisce leggermente nella forma da quello di una variabile discreta. Diremo che la variabile y=f(x) ha limite pari ad l quando x tende al valore Xo se possibile determinare un intorno del punto Xo tale che, per ogni valore di x appartenente all'intorno I(Xo) la differenza tra la variabile ed il limite un infinitesimo: per ogni x appartenente all'intorno I(Xo), comunque si scelga E nell'insieme R+, risulta

|y-l| < E

dove l'ampiezza d dell'intorno I(x0) = (x0-d;x0+d) dipende dal numero E.

Una grandezza y ammette il limite i, quando x si avvicina ad un valore fissato x0 , se, per tutti i valori di x appartenenti ad un opportuno intorno di x0 , la differenza tra i suoi valori ed il limite dato un infinitesimo.